IV. Аксиоматическое построение системы натуральных чисел

21.03.2024

ОЗО МАТЕМАТИКА 1 курс 2 семестр

Пример 1: Обоснуем выбор действия при решении задачи: «Купили 4 пачки цветной бумаги, а белой на 3 пачки больше. Сколько пачек белой бумаги купили?»

Решение. В задаче речь идет о двух множествах. Пусть А - множество пачек цветной бумаги, В - множество пачек белой бумаги. По условию известно число пачек цветной бумаги, т.е. n(A)=4, а численность множества В требуется найти. Кроме того, согласно условию задачи в множестве В можно выделить подмножество С, численность которого равна 3, т.е. n(C)=3. Сделаем это, например, так, как показано на рис. 1.

Рисунок 1

Тогда разность В \ С = В 1 будет равномощна множеству А, т.е. n(B 1) = n(A).

Таким образом, множество В является объединением множеств В 1 и С, где В 1 С=Æ.

Задача сводится к определению численности объединения двух непересекающихся множеств и решается действием сложения: n(B) = n(B 1 С) = n(B 1) + n(C); n(B) = 4+3 = 7.

Пример 2: Используя понятие числа как меры величи­ны, обоснуем выбор действия при решении задачи: «На юбку израсходовали 3м ткани, а на блузку 2м. Сколько метров ткани пошло на весь костюм?»

Решение: В задаче речь идет о величине – длина, которая измеряется при помощи единицы величины 1метр, т.к. величина длина непрерывная, то объяснить выбор действия при решении задачи будем при помощи отрезков (рис.2).

Пусть е=1м, отрезок а показывает длину ткани, израсходованной на юбку, а=3е. Отрезок в показывает длину ткани, израсходованной на блузку, в=2е. Т.к. в задаче требуется узнать количество всей израсходованной ткани, то отрезок с будет обозначать количество всей израсходованной ткани: с = а + в.

Рисунок 2 а=3е в=2е m е (с)= m e (a)+m е (в) m е (с) = 2+3 m е (с) = 5 Ответ: 5 м.

Пример 3: Используя понятие числа как меры величи­ны, обоснуем выбор действия при решении задачи: «В первом ящике было 12кг печенья, а во втором на 3кг меньше. Сколько килограммов печенья было во втором ящике?»

Решение: В задаче речь идет о величине масса, единица измерения которой 1килограмм, е = 1 кг, т.к. величина, масса непрерывная, то объяснять выбор действия при решении задачи будем при помощи отрезков (рис.3).

Пусть е=1кг, отрезок а показывает сколько килограммов печенья было в первом ящике, а = 12е.

Отрезок b показывает на сколько килограммов печенья было во втором ящике меньше, чем в первом, в = 3е.

Отрезок с показывает сколько килограммов печенья было во втором ящике, m e (с) - ? Известно, что во втором ящике на 3 кг печенья меньше, чем в первом, т.е. столько же, но на 3 меньше.

Пусть d=a, тогда c = d – b. а = 12е, значит d = 12е. m e (c)= m e (d)-m e (в) m e (c)=12-3 m e (c)=9 Рисунок 3

Ответ: 9 килограммов печенья было во втором ящике.

Отдел образования администрации Кировского района г. Волгограда

Муниципальное общеобразовательное учреждение

гимназия №9

Секция математика

По теме: Натуральные числа

Ученицы 6 б класса

Шанина Лиза

Руководитель:

Учитель математики

Дата написания работы:

Подпись руководителя:

г. Волгоград 2013 г.

Введение стр.3

§1. Основные понятия и определения стр.4

§2. Аксиоматика натурального числа стр. 5

§3. «О НЕКОТОРЫХ ТАЙНАХ, КОТОРЫЕ ХРАНЯТ ЧИСЛА» стр.8

§4. Великие математики стр. 10

Заключение стр. 12

Список литературы стр. 13

Введение

Что такое натуральные числа? Все! Ой, как хорошо. А кто может объяснить? Гм, гм, "положительные целые числа", нет, не пойдёт. Придётся объяснять, что такое "целые числа", а это сложнее. Ещё есть версии? Количество яблок? Кажется, мы не понимаем, зачем нужно объяснять.

Натуральные числа это некоторые математические объекты, чтобы делать о них какие-то утверждения, вводить на них операции (сложение, умножение), нам нужно какое-то формальное определение. Иначе операция сложения останется такой же неформальной, на уровне "было две кучки яблок, сложили их в одну". И доказывать теоремы, в которых используется сложение, станет невозможно, это печально.

Да-да, совершенно верно вспомнить, что точки и прямые это неопределимые понятия. Но у нас есть аксиомы , задающие свойства, на которые можно опираться в доказательствах. Например, "через любые две точки на плоскости можно провести прямую и притом только одну". И т. п. Вот чего-нибудь такого хотелось бы.

В данной работе мы будем рассматривать натуральные числа, аксиомы Пеано и тайны чисел.

Актуальность и новизна работы состоит в том, что область аксиом Пеано не раскрыта в школьных учебниках и не показана их роль.

Целью данной работы является изучение вопроса о натуральном числе и тайны чисел.

Основной гипотезой работы является аксиомы Пеано и тайны чисел.

§1. Основные понятия и определения

Число – это выражение определенного количества.

Натуральное число элемент неограниченно продолжающейся последовательности.

Натуральные числа (естественные числа) - числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел - числа, используемые при:

перечислении (нумеровании) предметов (первый, второй, третий, …);

обозначении количества предметов (нет предметов, один предмет, два предмета, …).

Аксиома это основные исходные положения (самоочевидные принципы) той или иной теории, из которых путем дедукции, то есть чисто логическими средствами, извлекается все остальное содержание этой теории.

Число, которое имеет только два делителя (само это число и единицу) называется - простым числом.

Составное число - это такое число, которое имеет более двух делителей.

§2. Аксиоматика натурального числа

Натуральные числа получаются при счете предметов и при измерении величин. Но если при измерении появляется числа, отличные от натуральных, то счет приводит только к числам натуральным. Чтобы вести счет, нужна последовательность числительных, которая начинается с единицы и которая позволяет осуществлять переход от одного числительного к другому и столько раз, сколько это необходимо. Иначе говоря, нужен отрезок натурального ряда. Поэтому, решая задачу обоснования системы натуральных чисел, в первую очередь надо было ответить на вопрос о том, что же представляет собой число как элемент натурального ряда. Ответ на это был дан в работах двух математиков - немца Грассмана и итальянца Пеано. Они предложили аксиоматику, в которой натуральное число обосновывалось как элемент неограниченно продолжающейся последовательности.

Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам .

Пять аксиом можно рассматривать как аксиоматическое определение основных понятий:

1 есть натуральное число;

Следующее за натуральным числом есть натуральное число;

1 не следует ни за каким натуральным числом;

Если натуральное число а следует за натуральным числом b и за натуральным числом с , то b и с тождественны;

Если какое-либо предложение доказано для 1 и если из допущения, что оно верно для натурального числа n , вытекает, что оно верно для следующего за n натурального числа, то это предложение верно для всех натуральных чисел.

Единица – это первое число натурального ряда, а также одна из цифр в десятичной системе счисления.

Считается, что обозначение единицы любого разряда одним и тем же знаком (довольно близким современному) появилось впервые в Древнем Вавилоне приблизительно за 2 тысячи лет до н. э.

Древние греки, считавшие числами лишь натуральные числа, рассматривали каждое из них как собрание единиц. Самой же единице отводится особое место: она числом не считалось.

И. Ньютон писал: «… под числом мы понимаем не столько собрание единиц, сколько отвлеченное отношение одной величины к другой величине, условно принятой нами за единицу». Таким образом, единица уже заняла своё законное место среди других чисел.


Арифметические действия над числами имеют самые различные свойства. Их можно описать словами, например: «От перемены мест слагаемых сумма не меняется». Можно записать буквами: a+b = b+a. Можно выразить специальными терминами.

Мы применяем основные законы арифметики часто по привычке, не осознавая этого:

1) переместительный закон (коммутативность), – свойство сложения и умножения чисел, выражаемое тождествами:

a+b = b+a a*b = b*a;

2) cочетательный закон (ассоциативность), – свойство сложения и умножения чисел, выражаемое тождествами:

(a+b)+с = а+(b+с) (a*b)*с = а*(b*с);

3) распределительный закон (дистрибутивность), – свойство, связывающее сложение и умножение чисел и выражающееся тождествами:

a*(b+с) = а*b+а*с (b+с) *a = b*а+с*а.

После доказательства переместительного, сочетательного и распределительного (по отношению к сложению) законов действия умножения дальнейшее построение теории арифметических действий над натуральными числами не представляет уже принципиальных затруднений.

В настоящее время в уме или на листке бумаги мы делаем лишь самые простые вычисления, все чаще и чаще поручая более сложную вычислительную работу калькуляторам, вычислительным машинам. Однако в основе работы всех вычислительных машин – простых и сложных – лежит самая простая операция – сложение натуральных чисел. Оказывается, самые сложные расчеты можно свести к сложению, только делать эту операцию надо многие миллионы раз.

§3. .«О НЕКОТОРЫХ ТАЙНАХ, КОТОРЫЕ ХРАНЯТ ЧИСЛА»

Числа Мерсенна.

В течение нескольких столетий шли поиски простых чисел.

Число, которое имеет только два делителя (само это число и единицу) называется - простым числом

Составное число - это такое число, которое имеет более двух делителей. Вот например: французский монах Марен Мерсенн (1г.) записал формулу числа « на простоту», которые получили название числа Мерсенна.

Это числа вида М р =2Р -1, где р = простое число.

Я проверила: выполнима ли эта формула для всех простых чисел

К настоящему времени числа большие 2 проверены на простоту для всех р до 50000.Е» результате было обнаружено более 30 простых чисел Мерсенна.

3.1 Совершенные числа.

Среди составных чисел выделяется такая группа чисел, которые получили название ■ совершенными, если число равнялось сумме всех своих делителей (исключая само число). Например:

496=1+2+4+8+16+31+62+124+248

3.2. Дружественные числа

Учёный Пифагор много путешествовал по странам Востока: был в Египте и в Вавилоне. Там Пифагор познакомился и с восточной математикой. Пифагор верил, что в числовых закономерностях спрятана тайна мира, числа имеют свой особый жизненный смысл. Среди составных чисел встречаются пары чисел, из которых каждое равняется сумме делителей другого.

Например: 220 и 284

220=1+2+4+5+10+11+20+22+44+55+110=284

234=1+2+4+71+142=220

Я с помощью калькулятора нашла ещё пары дружественных чисел.

Например: 1184 и 1210

1184=1+2+4+8+16+32+37+74+148+296+592=1210

1210=1+2+5+10+1.1+22+55+110+121+242+605=1184 и. т.д.

Дру́жественные чи́сла - два натуральных числа́, для которых сумма всех делителей первого числа́ (кроме него самого) равна второму числу и сумма всех делителей второго числа́ (кроме него самого) равна первому числу.. Обычно же, говоря о дружественных числах, имеют в виду пары из двух разных чисел.

Дружественные числа

Дружественные числа - пара чисел, из которых каждое равняется сумме своих делителей (например, 220 и 284).

§4. Великие математики

Герман Гюнтер Грассман (нем. Hermann Günther Grassmann, 1809-1877) - физик, математик и филолог.

После того как Грассман получил образование в Штетине, он поступал в Берлинский университет, на факультет теологии. Сдав с успехом оба экзамена по теологии, он долго не оставлял мысли посвятить себя деятельности проповедника, а стремление к богословию сохранил до конца своей жизни. В то же время он заинтересовался математикой. В 1840 году он выдержал дополнительный экзамен на приобретение права преподавать математику, физику, минералогию и химию.

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальных уравнений, определение и объём понятия кривой и т. п.) и формально-логическим обоснованием математики. Во всеобщее употребление вошла его аксиоматика натурального ряда чисел Известен его пример непрерывной (жордановой) кривой, целиком заполняющей некоторый квадрат.

Сэр Исаа́к Нью́то́н (англ. Sir Isaac Newton, 25 декабря 1642 - 20 марта 1727 по юлианскому календарю, действовавшему в Англии до 1752 года; или 4 января 1643 - 31 марта 1727 по григорианскому календарю) - английский физик, математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисление, теорию цвета и многие другие математические и физические теории.

Маре́н Мерсе́нн (устаревшая транслитерация Мари́н Мерсе́нн; фр. Marin Mersenne; 8 сентября 1588 - 1 сентября 1648) - французский математик, физик, философ и теолог. На протяжении первой половины XVII века был по существу координатором научной жизни Европы, ведя активную переписку практически со всеми видными учёными того времени. Имеет также серьёзные личные научные заслуги в области акустики, математики и теории музыки.

Заключение

Мы встречаемся с числами на каждом шагу и настолько с этим свыклись, что почти не отдаем себе отчета, насколько важны они в нашей жизни. Числа составляют часть человеческого мышления.

Выполнив данную работу, я узнала аксиомы натуральных чисел, великих математиков, некоторые тайны о числах. Всего существует десять цифр, а числа, которые можно представить с их помощью, бесконечное множество.

Математика немыслима без чисел. Разные способы представления числа помогают ученым создавать математические модели, теории, объясняющие неразгаданные явления природы.

Список литературы

1. Кордемский школьников математикой: (Материал для клас. и внеклас. занятий). – М.: Просвещение, 1981. – 112 с.

2. , Шор арифметических задач повышенной трудности. – М.: Просвещение, 1968. – 238 с.

3. Перельман арифметика. – М.: АО Столетие, 1994. – 164 с.

4. Малыгин историзма в преподавании математики в средней школе . – М.: Государственное учебно-педагогическое издательство министерства просвещения РСФСР, 1963. – 223 с.

5. , Шевкин. – М.: УНЦ довузовского обучения МГУ, 1996. – 303 с.

6. Математический энциклопедический словарь. / Гл. ред. ; Ред. кол.: , . – М.: Сов. энциклопедия, 1988. – 847 с.

7. Савин словарь юного математика. – М.: Педагогика, 1985. – 352с.

Требования к системе аксиом, аксиомы Пеано. При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила: 1) некоторые понятия теории выбираются в качестве основных и принимаются без определения; 2) каждому понятию теории, которое не содержится в списке основных, дается определение. В нем разъясняется его смысл с помощью основных и предшествующих данному понятий. 3) формулируется аксиомы, т.е предложения, которое в данной теории принимается без доказательства. В аксиомах раскрываются свойства основных понятий. 4) каждое предложение теории, которое не содержится в списке аксиом должно быть доказано. Такие предложения называются теоремами. Их доказывают на основе аксиом и теорем, предшествующих данной.

Т.О. аксиоматический метод построения математической теории проходит через несколько этапов: 1) введение основных неопределяемых понятий (н-р: множество, элемент множества в теории множеств). 2)введение основных отношений (н-р: отношение принадлежности в теории множеств). 3) через указание основных понятий и основных отношений вводится определение других понятий и отношений (н-р: в теории множеств понятия объединения, пересечения, разности, дополнения).

При аксиоматическом построении теории все утверждения выводятся путем доказательства из аксиом. Основу такой теории составляет система аксиом, и к системе аксиом предъявляются особые требования: 1)система аксиом должна быть непротиворечивой. Систему аксиом называют непротиворечивой, если из нее нельзя логически вывести два взаимоисключающих друг друга предложения. Другими словами, нельзя вывести высказывание и отрицание данного высказывания, так чтобы они одновременно были истинными. Чтобы убедится в непротиворечивости системы аксиом достаточно построить модель этой системы. 2) система аксиом должна быть независимой. Система аксиом называется независимой, если никакие из аксиом этой системы не являются следствием других аксиом. Другими словами каждая аксиома этой системы не может быть выведена из остальных аксиом. Чтобы доказать независимость системы аксиом достаточно построить модель этой системы. 3) система аксиом должна быть полной, т.е. количество аксиом выбранных в данной теории должно быть достаточно для введения новых понятий, отношений, доказательства теорем, для построения всей теории.

При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом, но они должны быть равносильными. В качестве основного понятия при аксиоматическом построении системы натуральных чисел взято отношение «непосредственно следовать за». Известными так же считаются понятия «множество», «элемент множества», правило логики. Элемент, непосредственно следующий за элементом а, обозначается а - штрих.

Суть отношения «непосредственно следовать за» раскрывается в следующих аксиомах: 1) во множестве натуральных чисел существует элемент, непосредственно не следующий ни за каким элементом этого множества, данный элемент 1 (единица). 2) для каждого элемента а из множества натуральных чисел (N) существует единственный элемент а? , не посредственно следующий за а. 3) для каждого элемента а из N, существует не более одного элемента, за которым непосредственно следует а. 4) всякое подмножество М множества N, обладающего свойствами: 1 М, и из того, что а содержится в М что и а? содержится в М, совпадает со множеством N.

Перечисленные системы аксиом называются аксиомами Пеано. Т.О. множество чисел, для которых устанавливается отношение непосредственно следовать за, удовлетворяющее аксиомам Пеано, называется множеством натуральных чисел, а его элемент - натуральным числом. Четвертая аксиома описывает бесконечность натурального ряда чисел и называется аксиомой индукции. На ее основе проводится доказательство различных утверждений методом математической индукции, который заключается в следующем: чтобы доказать, что данное утверждение истинно для любого натурального числа необходимо: 1) доказать, что это утверждение истинно для единицы, 2) из предложения, что утверждение истинно для произвольного числа к, доказать, что оно истинно и для следующего числа к?.

В определении множества N ничего не говорится о природе этого множества, значит оно может быть каким угодно. Выбирая в качестве множества N любое множество, на котором задано отношение непосредственно следовать за и удовлетворяющее аксиомам Пеано получим модель данной системы аксиом. Между всеми такими моделями можно установить взаимно однозначное соответствие. Эти модели будут отличаться только природой элементов, названием и обозначением. Н-р: 1, 2, 3, 4, 5… 0.00,000,0000,00000, … Ѕ, 1/3, ј, 1/5,

При аксиоматическом построении какой-либо теории соблюдаются определенные правила:

    некоторые понятия теории выбираются в качестве основных, и принимаются без определения и называется неопределяемыми.

    формулируются аксиомы – предложения, которые в данной теории принимаются без доказательства; в них раскрывают свойства основных понятий;

    каждому понятию теории, которое не содержится в списке основных, дается определение , в нем разъясняется его смысл помощью основных и предшествующих данному понятий;

    каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называются теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.

При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.

Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения.

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.

Аксиомы, как правило, являются отражением многовековой практической деятельности людей, и этим обусловливается их справедливость.

В качестве основного понятия при аксиоматическом построении арифметики натуральных чисел взято отношение «непосредственно следовать за», заданное на непустом множестве N. Известными также считаются понятия множества, элемента множества и другие теоретико-множественные понятия, а также правила логики.

Элемент, непосредственно следующий за элементом а, обозначают а". Суть отношения «непосредственно следовать за» раскрывается в следующих аксиомах, предложенных итальянским математиком Дж. Пеано в 1891 году.

Аксиома 1. В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества. Его называют единицей и обозначают символом 1.

Аксиома 2. Для каждого элемента а из N существует единственный элемент а", непосредственно следующий за а.

Аксиома 3. Для каждого элемента а из N существует не более одного элемента, за которым непосредственно следует а.

Аксиома 4. (Аксиома индукции). Всякое подмножество М множества N совпадает с N, если обладает свойствами: 1) 1 содержится в М; 2) из того, что любой элемент а содержится в М, следует, что и а" содержится в М.

Сформулированные аксиомы часто называют аксиомами Пеано, а аксиому четвертую – аксиомой индукции.

Запишем эти аксиомы в символической форме.

А 1 )(1 N)(a N) а " 1;

А 2 )(a N)(!b N) а "=b

А 3 ) (а, b N )с = а" с = b"  а = b;

A 4) M N  1 M (a M а " M) M=N

Используя отношение «непосредственно следовать за» и аксиомы Пеано 1-4, можно дать следующее определение натурального числа.

Определение 1. Множество N. для элементов которого установлено отношение «непосредственно следовать за», удовлетворяющее аксиомам 1-4, называется множеством натуральных чисел, а его элементы натуральными числами.

___________________________________________________________________

Определение 2 . Если натуральное число b непосредственно следует за числом а, то число а называется непосредственно предшествующим (предшествующим) числу b .

______________________________________________________________________________________________

Теорема 1 . Единица не имеет предшествующего натурального числа (истинность теоремы вытекает сразу из аксиомы А 1 ).

Теорема 2. Каждое натуральное число а, отличное от единицы имеет предшествующее число b, такое, что b" = а.

В определении натурального числа ничего не говорит о природе элементов множества N. Значит, она может быть какой угодно. Стандартной моделью системы аксиом Пеано является возник­ший в процессе исторического развития общества ряд чисел:

1, 2, 3, 4, 5 ,..,

Каждое число этого ряда имеет свое обозначение и название, которые будем считать известными.

Важно заметить, что в определении натурального числа ни одну из аксиом опустить нельзя.

1 a b c d

    …

b

Рис . 16 Рис. 17

Задача 1.

На рисунках каждый элемент соединен стрелкой со следующим за ним элементом.

Установить, какие из множеств, приведенных на рисунках 15 и 16, являются моделями системы аксиом Пеано.

1. На рис. 16 изображено множество, в котором выполняются аксиомы 2 и 3, но не выполняется аксиома 1.

Аксиома 4 не будет иметь смысла, так как в множестве нет элемента, непосредственно не следующего ни за каким другим.

2. На рис. 17 показано множество, в котором выполнены аксиомы 1, 2, 3, но не выполняется аксиома 4 – множество точек, лежащих на луче, содержит 1, и вместе с каждым числом оно содержит непосредственно следующее за ним число, но оно не совпадает со всем множеством точек, показанных на рисунке. Вывод: ни одно из множеств, изображенных на рис. 16 и 17, нельзя считать моделями системы аксиом Пеано.

Задача 2.

Докажем, что всякое натуральное число отлично от непосредственно следующего за ним натурального числа, т.е. (х  х"

Доказательство

Пользуемся аксиомой индукции – А 4 .

Пусть М= {х/х  , х х" }, т.к. х  М N.

Доказательство состоит из двух частей.

    Докажем, что 1 М, т.е. 1 1" . Это следует из А 1 .

    Докажем, что х М => х" М. Пусть х М т.е. х х". Докажем, что х" М , т.е. х" (х")". И з аксиомы А 3 следует х" (х") ". Действительно, по А 3 , если бы х" = (х")" то и х = х", а т.к. по предложению индукции х М, то х х", следовательно, приходим к противоречию. Значит, х" (х") " , х" М.

Здесь применено правило контрапозиции (ПК), широко применяемое в доказательствах «от противного».

Итак, мы получили:

М N (1 М (x М => х"  М)) M = N, т.е. утверждение х х" верно для любого натурального числа.

Контрольные вопросы

    В чем суть аксиоматического построения теории?

    Назовите основные понятия школьного курса планиметрии. Вспомните систему аксиом этого курса. Свойства каких понятий в них описываются?

    Сформулируйте и запишите в символической форме аксиомы Пеано. "

    Сформулируйте аксиоматическое определение натурального числа.

    Продолжите определение натурального числа: «Натуральным числом называется элемент множества N ,... ».

    Приведите примеры из учебников математики для начальных классов, в которых:

а) новое (для учащихся) число выступает как продолжение полученного отрезка натурального ряда;

б) устанавливается, что за каждым натуральным числом непосредственно следует только одно другое натуральное число.

Упражнения

285. Элементами множества являются группы черточек {I, II, III, IIII,...}. Удовлетворяет ли это множество аксиомам Пеано? Как определено здесь отношение «непосредственно следовать за». Рассмотрите эти же вопросы для множества {0, 00, 000, 0000,...}.

Рис. 17

286. На рисунке 17 а) каждый элемент соединен стрелкой со следую­щим за ним элементом. Можно ли считать множество моделью системы аксиом Пеано? Те же вопросы для множеств на рисунках 17 б), в), г).

287. Удовлетворяет ли аксиомам Пеано множество чисел {1, 2, 3 п, ...}, если отношение следования задано в нем так:

1 3  5 7….

2  4  6 8….

288. Приведите примеры заданий из учебников математики для начальных классов, в которых правильность выполнения заданий объясняется аксиомами Пеано.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.

    курсовая работа , добавлен 22.06.2015

    Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

    курсовая работа , добавлен 22.10.2011

    Новый способ умножения чисел. Схожесть образующейся при вычислении матрицы из цифр, с треугольником относительна, но все же есть, особенно при умножении трехзначных чисел и выше. Треугольная матрица.

    статья , добавлен 06.02.2005

    реферат , добавлен 13.01.2011

    Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа , добавлен 24.12.2010

    Множество неотрицательных действительных чисел как интерпретируемое подмножество R. Делимость в мультипликативных полугруппах. Строение числовых НОД и НОК полугрупп. Изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.

    дипломная работа , добавлен 27.05.2008

    Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.

    презентация , добавлен 09.10.2011

    Первоначальные элементы математики. Свойства натуральных чисел. Понятие теории чисел. Общие свойства сравнений и алгебраических уравнений. Арифметические действия со сравнениями. Основные законы арифметики. Проверка результатов арифметических действий.

    курсовая работа , добавлен 15.05.2015